论文标题
使用转移学习的最小标记社交媒体数据的局部洪水检测
Localized Flood DetectionWith Minimal Labeled Social Media Data Using Transfer Learning
论文作者
论文摘要
社交媒体每天产生大量数据,但是在不根据目标应用程序进行注释或对其进行标记的情况下有效地使用数据非常具有挑战性。我们使用社会传感模型(Twitter)研究了局部洪水检测的问题,以便提供有效,可靠和准确的洪水文本分类模型,并使用最少的标记数据。这项研究很重要,因为它可以极大地帮助城市官员提供与洪水有关的更新和通知,以进行应急决策,救援操作和早期警告等。我们建议我们使用电感传递学习方法即可执行文本分类,即使用预训练的语言模型ULMFIT,并在任何新的位置进行有效分类。最后,我们表明,使用目标域中的新标记数据很少,我们可以成功地建立一个高效且高性能的模型,以通过人类生成的事实和Twitter的观察结果来造成洪水检测和分析。
Social media generates an enormous amount of data on a daily basis but it is very challenging to effectively utilize the data without annotating or labeling it according to the target application. We investigate the problem of localized flood detection using the social sensing model (Twitter) in order to provide an efficient, reliable and accurate flood text classification model with minimal labeled data. This study is important since it can immensely help in providing the flood-related updates and notifications to the city officials for emergency decision making, rescue operations, and early warnings, etc. We propose to perform the text classification using the inductive transfer learning method i.e pre-trained language model ULMFiT and fine-tune it in order to effectively classify the flood-related feeds in any new location. Finally, we show that using very little new labeled data in the target domain we can successfully build an efficient and high performing model for flood detection and analysis with human-generated facts and observations from Twitter.