论文标题

使用基于图的半监督学习的方面术语提取

Aspect Term Extraction using Graph-based Semi-Supervised Learning

论文作者

Ansari, Gunjan, Saxena, Chandni, Ahmad, Tanvir, Doja, M. N.

论文摘要

基于方面的情感分析是情感分析的主要子区域。过去,已经提出了许多监督和无监督的方法来检测和分析方面术语的情感。在本文中,提出了一种基于图的半监督学习方法,用于方面术语提取。在这种方法中,使用标签扩展算法将审查文档中的每个标记文档中的每个标记都归类为一小部分标记令牌的术语。在提出的方法中采用了用于图形稀疏的K-Neart邻居(KNN),以使其更有效率和记忆效率。进一步扩展了拟议的工作,以确定与审查句子中确定的方面术语相关的意见单词的极性,以生成基于视觉方面的审查文档摘要。实验研究是在基准和爬网餐厅和笔记本电脑域的数据集上进行的,其标记实例的价值不同。结果表明,所提出的方法可以在精确,召回和准确性方面获得良好的结果,而标记数据的可用性有限。

Aspect based Sentiment Analysis is a major subarea of sentiment analysis. Many supervised and unsupervised approaches have been proposed in the past for detecting and analyzing the sentiment of aspect terms. In this paper, a graph-based semi-supervised learning approach for aspect term extraction is proposed. In this approach, every identified token in the review document is classified as aspect or non-aspect term from a small set of labeled tokens using label spreading algorithm. The k-Nearest Neighbor (kNN) for graph sparsification is employed in the proposed approach to make it more time and memory efficient. The proposed work is further extended to determine the polarity of the opinion words associated with the identified aspect terms in review sentence to generate visual aspect-based summary of review documents. The experimental study is conducted on benchmark and crawled datasets of restaurant and laptop domains with varying value of labeled instances. The results depict that the proposed approach could achieve good result in terms of Precision, Recall and Accuracy with limited availability of labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源