论文标题

分层人类解析与键入部分关系推理

Hierarchical Human Parsing with Typed Part-Relation Reasoning

论文作者

Wang, Wenguan, Zhu, Hailong, Dai, Jifeng, Pang, Yanwei, Shen, Jianbing, Shao, Ling

论文摘要

人类解析是针对像素的人类语义理解的。随着人体的基本层次结构化,如何建模人类结构是该任务的中心主题。为此,我们寻求同时利用深图网络和分层人体结构的代表性。特别是,我们提供以下两项贡献。首先,三种零件关系,即分解,组成和依赖关系,这是第一次由三个不同的关系网络完全和精确地描述。这与以前的解析器形成鲜明对比,后者仅着眼于一部分关系并采用类型 - 不合Stic的关系建模策略。可以通过明确施加关系网络中的参数来满足不同关系的特定特征来捕获更多的表达关系信息。其次,以前的解析器在很大程度上忽略了对Loopy人类层次结构的近似算法的必要性,而我们相反,我们通过用其边缘型的,卷积的卷积对应物来吸收通用消息的网络来解决迭代推理过程。通过这些努力,我们的解析器奠定了基础,以更加复杂,灵活的人类关系模式的推理模式。在五个数据集上进行的全面实验表明,我们的解析器在每个数据集上设置了一个新的最新技术。

Human parsing is for pixel-wise human semantic understanding. As human bodies are underlying hierarchically structured, how to model human structures is the central theme in this task. Focusing on this, we seek to simultaneously exploit the representational capacity of deep graph networks and the hierarchical human structures. In particular, we provide following two contributions. First, three kinds of part relations, i.e., decomposition, composition, and dependency, are, for the first time, completely and precisely described by three distinct relation networks. This is in stark contrast to previous parsers, which only focus on a portion of the relations and adopt a type-agnostic relation modeling strategy. More expressive relation information can be captured by explicitly imposing the parameters in the relation networks to satisfy the specific characteristics of different relations. Second, previous parsers largely ignore the need for an approximation algorithm over the loopy human hierarchy, while we instead address an iterative reasoning process, by assimilating generic message-passing networks with their edge-typed, convolutional counterparts. With these efforts, our parser lays the foundation for more sophisticated and flexible human relation patterns of reasoning. Comprehensive experiments on five datasets demonstrate that our parser sets a new state-of-the-art on each.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源