论文标题
无扭转的代数c*唯一组
A torsion-free algebraically C*-unique group
论文作者
论文摘要
令$ p $和$ q $为多重独立整数。我们表明,$ \ mathbb {z}的复杂组环[\ frac {1} {pq}] \ rtimes \ mathbb {z}^2 $允许唯一$ \ mathrm {c}^*$ - norm。该证明使用$ \ times p-$和$ \ times q- $不变的子集的$ \ mathbb {t} $不变的子集使用,使用了一个表征。
Let $p$ and $q$ be multiplicatively independent integers. We show that the complex group ring of $\mathbb{Z}[\frac{1}{pq}]\rtimes\mathbb{Z}^2$ admits a unique $\mathrm{C}^*$-norm. The proof uses a characterization, due to Furstenberg, of closed $\times p-$ and $\times q-$invariant subsets of $\mathbb{T}$.