论文标题
Torchio:一个用于高效加载,预处理,增强和基于补丁的医学图像的python库
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
论文作者
论文摘要
与计算机视觉中通常使用的RGB图像相比,MRI或CT等医学图像的处理提出了独特的挑战。其中包括缺乏大型数据集的标签,高计算成本和元数据来描述体素的物理特性。数据增强用于人为地增加培训数据集的大小。图像贴片的训练减少了对计算能力的需求。需要仔细考虑空间元数据,以确保正确对齐量。 我们提出了Torchio,这是一个开源Python库,可实现有效的负载,预处理,增强和基于补丁的医学图像采样,以进行深度学习。 Torchio遵循Pytorch的风格,并集成了标准的医疗图像处理库,以在神经网络训练期间有效地处理图像。 TORCHIO变换可以组成,复制,追踪和扩展。我们提供多个通用的预处理和增强操作以及MRI特异性工件的模拟。 可以在https://torchio.rtfd.io/上找到源代码,综合教程和大量文档。可以从运行“ PIP Install Torchio”的Python软件包索引中安装软件包。它包括一个命令行界面,允许用户在不使用Python的情况下将转换应用于图像文件。此外,我们在3D切片器中的割chio扩展中提供图形界面,以可视化变换的效果。 Torchio的开发是为了帮助研究人员标准化医学图像处理管道,并让他们专注于深度学习实验。它鼓励开放科学,因为它支持可重复性并受到版本的控制,因此可以精确引用该软件。由于其模块化,该库与其他医学图像的深度学习框架兼容。
Processing of medical images such as MRI or CT presents unique challenges compared to RGB images typically used in computer vision. These include a lack of labels for large datasets, high computational costs, and metadata to describe the physical properties of voxels. Data augmentation is used to artificially increase the size of the training datasets. Training with image patches decreases the need for computational power. Spatial metadata needs to be carefully taken into account in order to ensure a correct alignment of volumes. We present TorchIO, an open-source Python library to enable efficient loading, preprocessing, augmentation and patch-based sampling of medical images for deep learning. TorchIO follows the style of PyTorch and integrates standard medical image processing libraries to efficiently process images during training of neural networks. TorchIO transforms can be composed, reproduced, traced and extended. We provide multiple generic preprocessing and augmentation operations as well as simulation of MRI-specific artifacts. Source code, comprehensive tutorials and extensive documentation for TorchIO can be found at https://torchio.rtfd.io/. The package can be installed from the Python Package Index running 'pip install torchio'. It includes a command-line interface which allows users to apply transforms to image files without using Python. Additionally, we provide a graphical interface within a TorchIO extension in 3D Slicer to visualize the effects of transforms. TorchIO was developed to help researchers standardize medical image processing pipelines and allow them to focus on the deep learning experiments. It encourages open science, as it supports reproducibility and is version controlled so that the software can be cited precisely. Due to its modularity, the library is compatible with other frameworks for deep learning with medical images.