论文标题
量子主方程动力学的直接重建
Direct reconstruction of the quantum master equation dynamics of a trapped ion qubit
论文作者
论文摘要
马尔可夫开放量子系统的物理学可以通过量子主方程来描述。这些是动态方程式,结合了哈密顿量和跳跃操作员,并产生系统的时间演变。重建系统的哈密顿量及其通过测量与环境的耦合对于基础研究以及量子机的性能评估都很重要。在本文中,我们介绍了一种方法,该方法直接从所选可观察物的一组期望值中重建开放量子系统的动态方程。通过模拟和实验,我们通过测量自发光子散射下的被困$^{88} \ text {sr}^+$ ion的动力学来基准我们的技术。
The physics of Markovian open quantum systems can be described by quantum master equations. These are dynamical equations, that incorporate the Hamiltonian and jump operators, and generate the system's time evolution. Reconstructing the system's Hamiltonian and and its coupling to the environment from measurements is important both for fundamental research as well as for performance-evaluation of quantum machines. In this paper we introduce a method that reconstructs the dynamical equation of open quantum systems, directly from a set of expectation values of selected observables. We benchmark our technique both by a simulation and experimentally, by measuring the dynamics of a trapped $^{88}\text{Sr}^+$ ion under spontaneous photon scattering.