论文标题

深度霍夫转换语义线检测

Deep Hough Transform for Semantic Line Detection

论文作者

Zhao, Kai, Han, Qi, Zhang, Chang-Bin, Xu, Jun, Cheng, Ming-Ming

论文摘要

我们专注于自然场景中检测有意义的线结构的基本任务,即语义线。许多以前的方法将此问题视为对象检测的一种特殊情况,并调整现有的对象检测器以进行语义线检测。但是,这些方法忽略了线的固有特征,从而导致了次优性能。线条享有比复杂对象更简单的几何属性,因此可以通过一些参数将参数缩小。为了更好地利用线条的属性,在本文中,我们将经典的Hough Transform技术纳入了深度学习的表示形式中,并提出了一个端到端学习框架以进行线路检测。通过使用斜率和偏差的参数化线,我们执行Hough Transform以将深度表示转化为参数域,在该域​​中我们执行线路检测。具体而言,我们沿特征映射平面上的候选线汇总特征,然后将汇总特征分配给参数域中的相应位置。因此,在空间域中检测语义线的问题转化为参数域中的单个点,从而使后处理步骤,即非最大程度的抑制,更有效。此外,我们的方法使提取上下文线路的特征沿靠近特定线路的线路特征,这对于准确的线路检测至关重要。除了提出的方法外,我们还设计了一个评估指标,以评估线路检测的质量并为线路检测任务构建大型数据集。我们提出的数据集和另一个公共数据集的实验结果证明了我们方法比以前最先进的替代方案的优势。

We focus on a fundamental task of detecting meaningful line structures, a.k.a. semantic line, in natural scenes. Many previous methods regard this problem as a special case of object detection and adjust existing object detectors for semantic line detection. However, these methods neglect the inherent characteristics of lines, leading to sub-optimal performance. Lines enjoy much simpler geometric property than complex objects and thus can be compactly parameterized by a few arguments. To better exploit the property of lines, in this paper, we incorporate the classical Hough transform technique into deeply learned representations and propose a one-shot end-to-end learning framework for line detection. By parameterizing lines with slopes and biases, we perform Hough transform to translate deep representations into the parametric domain, in which we perform line detection. Specifically, we aggregate features along candidate lines on the feature map plane and then assign the aggregated features to corresponding locations in the parametric domain. Consequently, the problem of detecting semantic lines in the spatial domain is transformed into spotting individual points in the parametric domain, making the post-processing steps, i.e. non-maximal suppression, more efficient. Furthermore, our method makes it easy to extract contextual line features eg features along lines close to a specific line, that are critical for accurate line detection. In addition to the proposed method, we design an evaluation metric to assess the quality of line detection and construct a large scale dataset for the line detection task. Experimental results on our proposed dataset and another public dataset demonstrate the advantages of our method over previous state-of-the-art alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源