论文标题

增量少量对象检测

Incremental Few-Shot Object Detection

论文作者

Perez-Rua, Juan-Manuel, Zhu, Xiatian, Hospedales, Timothy, Xiang, Tao

论文摘要

大多数现有的对象检测方法都取决于在批处理模式下每个课程和离线模型培训的大量标记培训样本的可用性。这些要求将其可扩展性大大限制为具有有限标记的培训数据的新型课程的开放式适应。我们提出了一项研究,旨在通过考虑增量的几杆检测(IFSD)问题设置,必须逐步注册新的类(不重新审视基础类),并且很少有示例,旨在超越这些限制。为此,我们提出了一个开放式中心网(一次),这是一个旨在逐步学习以逐渐学习的探测器,几乎没有例子。这是通过将Centrenet探测器优雅改编到几杆学习方案中来实现的,以及用于注册新颖类的特定于类的代码生成器模型。一旦完全尊重增量学习范式,新颖的课程注册只需要几个训练样本的单个前向通行证,而无法访问基础类别 - 因此使其适合在嵌入式设备上部署。对标准对象检测和时尚地标检测任务进行的广泛实验表明,IFSD首次的可行性,开辟了一条有趣且非常重要的研究线。

Most existing object detection methods rely on the availability of abundant labelled training samples per class and offline model training in a batch mode. These requirements substantially limit their scalability to open-ended accommodation of novel classes with limited labelled training data. We present a study aiming to go beyond these limitations by considering the Incremental Few-Shot Detection (iFSD) problem setting, where new classes must be registered incrementally (without revisiting base classes) and with few examples. To this end we propose OpeN-ended Centre nEt (ONCE), a detector designed for incrementally learning to detect novel class objects with few examples. This is achieved by an elegant adaptation of the CentreNet detector to the few-shot learning scenario, and meta-learning a class-specific code generator model for registering novel classes. ONCE fully respects the incremental learning paradigm, with novel class registration requiring only a single forward pass of few-shot training samples, and no access to base classes -- thus making it suitable for deployment on embedded devices. Extensive experiments conducted on both the standard object detection and fashion landmark detection tasks show the feasibility of iFSD for the first time, opening an interesting and very important line of research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源