论文标题

一种用于测试高维平均向量的成对酒店

A Pairwise Hotelling Method for Testing High-Dimensional Mean Vectors

论文作者

Hu, Zongliang, Tong, Tiejun, Genton, Marc G.

论文摘要

对于高维小样本量数据,由于样本协方差矩阵中的奇异性问题,Hotelling的T2测试不适用于测试平均向量。为了克服问题,文献中有三种主要方法。但是,请注意,每种现有方法可能都有严重的局限性,并且只能在某些情况下效果很好。受此启发的启发,我们提出了一种用于测试高维均值向量的成对烤制方法,从本质上讲,该方法在现有方法之间提供了良好的平衡。为了有效地利用相关信息,我们将新的测试统计数据构建为对与与他人几乎没有相关性的个体协变量的协变量对的Hotelling测试统计数据的总结。在某些规律性条件下,我们进一步得出了拟议的酒店测试的渐近无效分布和功率功能。数值结果表明,与现有方法相比,我们的新测试能够控制I型错误率,并且可以实现更高的统计能力,尤其是当协变量高度相关时。还分析了两个真实的数据示例,它们都证明了我们成对的酒店测试的功效。

For high-dimensional small sample size data, Hotelling's T2 test is not applicable for testing mean vectors due to the singularity problem in the sample covariance matrix. To overcome the problem, there are three main approaches in the literature. Note, however, that each of the existing approaches may have serious limitations and only works well in certain situations. Inspired by this, we propose a pairwise Hotelling method for testing high-dimensional mean vectors, which, in essence, provides a good balance between the existing approaches. To effectively utilize the correlation information, we construct the new test statistics as the summation of Hotelling's test statistics for the covariate pairs with strong correlations and the squared $t$ statistics for the individual covariates that have little correlation with others. We further derive the asymptotic null distributions and power functions for the proposed Hotelling tests under some regularity conditions. Numerical results show that our new tests are able to control the type I error rates, and can achieve a higher statistical power compared to existing methods, especially when the covariates are highly correlated. Two real data examples are also analyzed and they both demonstrate the efficacy of our pairwise Hotelling tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源