论文标题

在波动不确定性下定价利率衍生品

Pricing Interest Rate Derivatives under Volatility Uncertainty

论文作者

Hölzermann, Julian

论文摘要

在本文中,我们研究了骑士不确定性或模型不确定性的波动不确定性下固定收益市场中合同的定价。起点是在波动不确定性下的无套利债券市场。关于波动率的不确定性是由G-Brownian运动模拟的,该运动驱动了远期速率动力学。通过漂移条件确保缺乏套利。这样的设置会导致针对其他合同的标准定价措施,这会产生单个价格或一系列价格。与远期度量方法相似,我们定义了前向议E的期望,以简化现金流的定价。在前进的sublinear期望下,我们获得了预期假设的强大版本,并展示了如何以远期价格进行价格选择。此外,我们为由现金流的合同开发了定价方法,因为定价措施的非线性意味着我们不能通过分别定价来定价现金流来定价。使用这些工具,我们为所有主要利率衍生品提供了强大的定价公式。定价公式提供了与传统模型的定价公式无波动性不确定性的链接,并表明波动不确定性自然会导致无关紧要的随机波动性。

In this paper, we study the pricing of contracts in fixed income markets under volatility uncertainty in the sense of Knightian uncertainty or model uncertainty. The starting point is an arbitrage-free bond market under volatility uncertainty. The uncertainty about the volatility is modeled by a G-Brownian motion, which drives the forward rate dynamics. The absence of arbitrage is ensured by a drift condition. Such a setting leads to a sublinear pricing measure for additional contracts, which yields either a single price or a range of prices. Similar to the forward measure approach, we define the forward sublinear expectation to simplify the pricing of cashflows. Under the forward sublinear expectation, we obtain a robust version of the expectations hypothesis, and we show how to price options on forward prices. In addition, we develop pricing methods for contracts consisting of a stream of cashflows, since the nonlinearity of the pricing measure implies that we cannot price a stream of cashflows by pricing each cashflow separately. With these tools, we derive robust pricing formulas for all major interest rate derivatives. The pricing formulas provide a link to the pricing formulas of traditional models without volatility uncertainty and show that volatility uncertainty naturally leads to unspanned stochastic volatility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源