论文标题

最大化界限宽度图的幸福

Maximizing Happiness in Graphs of Bounded Clique-Width

论文作者

Bliznets, Ivan, Sagunov, Danil

论文摘要

集团宽度是描述图的结构复杂性的最重要参数之一。可能,只有对图的图形宽度参数进行了更多研究。在本文中,我们研究集团宽度如何影响最大快乐顶点(MHV)和最大快乐边缘(MHE)问题的复杂性。我们回答了Choudhari和Reddy '18的一个问题,即通过显示MHE在阈值图上是NP完整的,以通过距离到阈值图的距离进行参数化。因此,当通过集合宽度参数化时,它甚至都不在XP中,因为阈值图最多具有两个宽度。作为此结果的补充,我们为MHE提供了$ n^{\ mathcal {o}(\ ell \ cdot \ cdot \ propatorAtorname {cw})} $ algorithm,其中$ \ ell $是颜色的数量,$ \ ellgorithm是$ \ propatatorname {cw} $是clique-witth of the input图。我们还使用运行时间$ \ mathcal {o}^*((((\ ell+1)^{\ Mathcal {o}(\ propatorAtorName {cw})})),我们还为MHV构建了fpt算法,其中$ \ ell $是输入中的颜色数。此外,我们显示$ \ Mathcal {o}(\ ell n^2)$在间隔图上的MHV算法。

Clique-width is one of the most important parameters that describes structural complexity of a graph. Probably, only treewidth is more studied graph width parameter. In this paper we study how clique-width influences the complexity of the Maximum Happy Vertices (MHV) and Maximum Happy Edges (MHE) problems. We answer a question of Choudhari and Reddy '18 about parameterization by the distance to threshold graphs by showing that MHE is NP-complete on threshold graphs. Hence, it is not even in XP when parameterized by clique-width, since threshold graphs have clique-width at most two. As a complement for this result we provide a $n^{\mathcal{O}(\ell \cdot \operatorname{cw})}$ algorithm for MHE, where $\ell$ is the number of colors and $\operatorname{cw}$ is the clique-width of the input graph. We also construct an FPT algorithm for MHV with running time $\mathcal{O}^*((\ell+1)^{\mathcal{O}(\operatorname{cw})})$, where $\ell$ is the number of colors in the input. Additionally, we show $\mathcal{O}(\ell n^2)$ algorithm for MHV on interval graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源