论文标题
通过机器学习预测晶体中原子扩散率的有效势能表面映射的采样策略
A Sampling Strategy in Efficient Potential Energy Surface Mapping for Predicting Atomic Diffusivity in Crystals by Machine Learning
论文作者
论文摘要
我们提出了一种基于机器学习的方法(基于ML的)方法,用于有效预测晶体中的原子扩散率,其中通过第一原则计算,部分评估了扩散载体的势能表面(PES)。为了优先评估管理原子扩散率的感兴趣区域,根据已经计算的势能(PES)构建了基于高斯过程(GP-PES)的统计PES模型(GP-PES)。在提出的方法中,在GP-PES的预测平均值上探索了所有局部能量最小值(稳定和亚稳态位点)和原子扩散(原子跳跃)的基本过程。然后,根据GP-PES的方差估算每个基本过程中跳跃频率的不确定性。确定要计算的下一个网格点的采集函数旨在反映跳跃频率不确定性对宏观原子扩散率不确定性的影响。这里采用了主方程的数值解决方案来容易估计原子扩散率,这使我们能够设计反映每个基本过程中心性的采集函数。
We propose a machine-learning-based (ML-based) method for efficiently predicting atomic diffusivity in crystals, in which the potential energy surface (PES) of a diffusion carrier is partially evaluated by first-principles calculations. To preferentially evaluate the region of interest governing the atomic diffusivity, a statistical PES model based on a Gaussian process (GP-PES) is constructed and updated iteratively from known information on already-computed potential energies (PEs). In the proposed method, all local energy minima (stable & metastable sites) and elementary processes of atomic diffusion (atomic jumps) are explored on the predictive mean of the GP-PES. The uncertainty of jump frequency in each elementary process is then estimated on the basis of the variance of the GP-PES. The acquisition function determining the next grid point to be computed is designed to reflect the impacts of the uncertainties of jump frequencies on the uncertainty of the macroscopic atomic diffusivity. The numerical solution of the master equation is here employed to readily estimate the atomic diffusivity, which enables us to design the acquisition function reflecting the centrality of each elementary process.