论文标题
使用Gramian Angular求和领域进行癫痫诊断的深度神经网络来对EEG信号进行分类
Implementation of Deep Neural Networks to Classify EEG Signals using Gramian Angular Summation Field for Epilepsy Diagnosis
论文作者
论文摘要
本文评估了通过深神经网络(DNN)诊断癫痫中EEG等成像时间的方法的方法。使用Gramian Angular求和场(GASF)将EEG信号转化为RGB图像。许多这样的EEG时期转化为正常和局灶性EEG信号的GASF图像。然后,这里使用了一些广泛使用的深层神经网络用于图像分类问题,以检测局灶性GASF图像。基于转移学习方法,对三个预训练的DNN,例如Alexnet,VGG16和VGG19进行了验证以进行癫痫检测。此外,从GASF图像中提取纹理特征,并为多层人工神经网络(ANN)分类器选择突出特征。最后,提出了一个定制卷积神经网络(CNN),该神经网络具有三个CNN层,批发归一化,最大 - 充电层和密集层,用于从GASF图像中诊断癫痫诊断。本文的结果表明,自定义CNN模型能够区分焦点和正常的GASF图像,平均峰精度为0.885,召回0.92,F1得分为0.90。此外,对于自定义CNN模型,接收器工作特性(ROC)曲线的曲线下的面积(AUC)值为0.92。本文提出,在图像分类问题中广泛使用的深度学习方法可能是通过GASF图像从EEG信号检测癫痫的替代方法。
This paper evaluates the approach of imaging timeseries data such as EEG in the diagnosis of epilepsy through Deep Neural Network (DNN). EEG signal is transformed into an RGB image using Gramian Angular Summation Field (GASF). Many such EEG epochs are transformed into GASF images for the normal and focal EEG signals. Then, some of the widely used Deep Neural Networks for image classification problems are used here to detect the focal GASF images. Three pre-trained DNN such as the AlexNet, VGG16, and VGG19 are validated for epilepsy detection based on the transfer learning approach. Furthermore, the textural features are extracted from GASF images, and prominent features are selected for a multilayer Artificial Neural Network (ANN) classifier. Lastly, a Custom Convolutional Neural Network (CNN) with three CNN layers, Batch Normalization, Max-pooling layer, and Dense layers, is proposed for epilepsy diagnosis from GASF images. The results of this paper show that the Custom CNN model was able to discriminate against the focal and normal GASF images with an average peak Precision of 0.885, Recall of 0.92, and F1-score of 0.90. Moreover, the Area Under the Curve (AUC) value of the Receiver Operating Characteristic (ROC) curve is 0.92 for the Custom CNN model. This paper suggests that Deep Learning methods widely used in image classification problems can be an alternative approach for epilepsy detection from EEG signals through GASF images.