论文标题
爱因斯坦立方重力的拓扑生成式侵袭性的黑洞
Topological Born-Infeld charged black holes in Einsteinian cubic gravity
论文作者
论文摘要
在本文中,我们研究了在存在非线性出生式电动动力学和裸露的宇宙常数的情况下,爱因斯坦立方重力的四维拓扑黑洞解决方案。首先,我们获得了管理解决方案的字段方程。我们采用雅培 - 迪斯特(Abbott-Deser-tekin)和高斯公式(Gauss)公式,我们介绍了保守量的表达,即总质量和拓扑黑溶液的总质量和总电荷。我们揭示了该模型在渐近(a)DS和平坦解决方案的幽灵上均不扰动的条件。我们发现,为了消失裸露的宇宙常数,该模型仅用于渐近平坦的溶液,仅允许具有球形拓扑的视野。我们计算这些溶液的温度,并表明它始终具有最大值,随着电荷,非线性耦合或立方耦合的增长而降低。接下来,我们计算熵和电势。我们表明,对于球形渐近平面溶液,热力学的第一定律得到了满足。最后,我们仔细研究模型参数对规范和大规范合奏中这些解决方案的热稳定性的影响。
In this paper, we study four-dimensional topological black hole solutions of Einsteinian cubic gravity in the presence of nonlinear Born-Infeld electrodynamics and a bare cosmological constant. First, we obtain the field equations which govern our solutions. Employing Abbott-Deser-Tekin and Gauss formulas, we present the expressions of conserved quantities, namely total mass and total charge of our topological black solutions. We disclose the conditions under which the model is unitary and perturbatively free of ghosts with asymptotically (A)dS and flat solutions. We find that, for vanishing bare cosmological constant, the model is unitary just for asymptotically flat solutions, which only allow horizons with spherical topology. We compute the temperature for these solutions and show that it always has a maximum value, which decreases as the values of charge, nonlinear coupling or cubic coupling grows. Next, we calculate the entropy and electric potential. We show that the first law of thermodynamics is satisfied for spherical asymptotically flat solutions. Finally, we peruse the effects of model parameters on thermal stability of these solutions in both canonical and grand canonical ensembles.