论文标题
核电子全颗粒密度基质重新归一化组
Nuclear-Electronic All-Particle Density Matrix Renormalization Group
论文作者
论文摘要
我们引入了核电子全粒子密度基质重新归一化组(NEAP-DMRG)方法,用于同时解决电子和其他量子物种的时间独立依赖性的schrödinger方程。与已经存在的多组分方法相反,在这项工作中,我们从一开始就构建了具有随机优化的非正交高斯轨道的多参考试验波函数。通过迭代培养高斯的位置和宽度,我们为多组分波函数获得了紧凑的多参考膨胀。我们将DMRG算法扩展到多组分波函数,以考虑到种类间和内部的相关效应。总波函数作为矩阵产物状态的有效参数化允许Neap-DMRG准确地近似具有超过三个核和十二个颗粒的分子系统的完整配置相互作用能量,这目前是其他多组分方法的重大挑战。我们提供了两个几个体系统的Neap-DMRG结果,即H $ _2 $和H $ _3^+$,以及一个较大的系统,即BH $ _3 $
We introduce the Nuclear Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrödinger equation simultaneously for electrons and other quantum species. In contrast to already existing multicomponent approaches, in this work we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians' positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parametrization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate full configuration interaction energies of molecular systems with more than three nuclei and twelve particles in total, which is currently a major challenge for other multicomponent approaches. We present NEAP-DMRG results for two few-body systems, i.e., H$_2$ and H$_3^+$, and one larger system, namely BH$_3$