论文标题

单个生存分布的变分学习

Variational Learning of Individual Survival Distributions

论文作者

Xiu, Zidi, Tao, Chenyang, Goldstein, Benjamin A., Henao, Ricardo

论文摘要

丰富的现代健康数据为使用机器学习技术提供了许多机会,以建立更好的统计模型来改善临床决策。预测事件时间分布(也称为生存分析)在许多临床应用中都起着关键作用。我们介绍了一个差异性事件预测模型,称为变分生存推理(VSI),该模型基于分布学习技术和深层神经网络的最新进展。 VSI通过($ i $)放松经典模型中做出的限制性建模假设的挑战,以及($ ii $)有效地处理审查的观察值,{\ it I.E.},在观察窗口之外发生的事件,所有这些事件都在各种框架内发生。为了验证我们的方法的有效性,进行了一组关于合成和现实数据集的实验集,相对于竞争解决方案,表明性能提高了。

The abundance of modern health data provides many opportunities for the use of machine learning techniques to build better statistical models to improve clinical decision making. Predicting time-to-event distributions, also known as survival analysis, plays a key role in many clinical applications. We introduce a variational time-to-event prediction model, named Variational Survival Inference (VSI), which builds upon recent advances in distribution learning techniques and deep neural networks. VSI addresses the challenges of non-parametric distribution estimation by ($i$) relaxing the restrictive modeling assumptions made in classical models, and ($ii$) efficiently handling the censored observations, {\it i.e.}, events that occur outside the observation window, all within the variational framework. To validate the effectiveness of our approach, an extensive set of experiments on both synthetic and real-world datasets is carried out, showing improved performance relative to competing solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源