论文标题
关于大型恒星簇的早期演变:云D1的情况及其嵌入式簇在NGC 5253中
On the early evolution of massive star clusters: the case of cloud D1 and its embedded cluster in NGC 5253
论文作者
论文摘要
我们讨论了一个理论模型,用于大规模恒星簇的早期演变,并与ALMA,无线电和红外观察对年轻恒星群集的观察结果高度掩盖了附近的矮人球形Galaxy Galaxy NGC NGC 5253中的分子云D1高度掩盖的,我们显示了互联剂的巨大的压力。邻居。在这种情况下,恒星风被添加到单个大型恒星周围的热震动的气口中,这会导致他们在时间尺度上相遇并产生簇状风,小于$ 10^5 $ yrs。为了抑制云扩散的可能性或早期的负恒星形成反馈,应该考虑到可能从前序列序列(PMS)低质量恒星通过光蒸发其原始播种磁盘的质量负载。以超过8 $ \ times 10^{ - 9} $ m $ _ {\ odot} $ yr $^{ - 1} $每个PMS星的质量加载速率10^{ - 9} $ m $ _ {\ odot} $ yr $^{ - 1} $,以扩展此特定群集中隐藏的Star群集阶段。在这个制度中,父母的云仍然相对不受干扰,而在恒星形成区域内共存的分子,光电离和热气体。然而,云D1及其嵌入的集群的最可能场景是,当PMS Star Star Proto-Stellar Disks消失并允许群集形成全球风的PMS Star Proto-Stellar磁盘消失并大规模负载保持良好时,围绕单个巨大恒星的热震动应合并。
We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbors. In this case stellar winds are added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than $10^5$ yrs. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main sequence (PMS) low-mass stars through photo-evaporation of their proto-stellar disks. Mass loading at a rate in excess of 8$\times 10^{-9}$ M$_{\odot}$ yr$^{-1}$ per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few millions of years when the PMS star proto-stellar disks vanish and mass loading ceases that allows a cluster to form a global wind.