论文标题
蒙特卡洛研究分支随机步行的尖端区域已演变成大量时期
Monte Carlo study of the tip region of branching random walks evolved to large times
论文作者
论文摘要
我们以蒙特卡洛事件生成器的形式实施了一维分支布朗尼运动的离散化,旨在有效地产生实现的集合,在这种情况下,最后一次$ t $的最右边粒子被限制在$ x $上的最右边粒子的位置$ x $比某些预先定义的值$ x _ {\ x _ {\ text {min}} $大。后者可以任意选择距离$ x $的期望值,并且在铅粒子附近的粒子密度上可观察到的进化时间可能大于$ t \ sim 10^4 $。然后,我们以数字计算$ n $ n $粒子的概率分布$ p_n(ΔX)$ [x-Δx,x] $作为$ΔX$的函数。当$ x _ {\ text {min}} $明显小于最右边粒子位置的预期值时,即当$ x $有效地不受限制时,我们检查$ n $的平均值和典型值是否呈$ n $的典型值则以$δx$的形式生长,并以线性的预制器和有限的$ t $ primite-$ t $ prifitions。当$ x _ {\ text {min}} $被选中远远领先于后者,但在延伸的区域内,其权利范围超过了$ \ sqrt {t} $的尺寸,粒子数的平均值仍以$ΔX$的呈指数增长,但其典型值较低,而其典型因子则与$ e^e^e^ - ---------------------------------------------------------------------------------------------------------------项目参差投项目参差不齐。 $ζ$是许多订单统一。这些数值结果为无限时间限制的最新分析计算和猜想带来了强烈的支持。
We implement a discretization of the one-dimensional branching Brownian motion in the form of a Monte Carlo event generator, designed to efficiently produce ensembles of realizations in which the rightmost lead particle at the final time $T$ is constrained to have a position $X$ larger than some predefined value $X_{\text{min}}$. The latter may be chosen arbitrarily far from the expectation value of $X$, and the evolution time after which observables on the particle density near the lead particle are measured may be as large as $T\sim 10^4$. We then calculate numerically the probability distribution $p_n(Δx)$ of the number $n$ of particles in the interval $[X-Δx,X]$ as a function of $Δx$. When $X_{\text{min}}$ is significantly smaller than the expectation value of the position of the rightmost lead particle, i.e. when $X$ is effectively unconstrained, we check that both the mean and the typical values of $n$ grow exponentially with $Δx$, up to a linear prefactor and to finite-$T$ corrections. When $X_{\text{min}}$ is picked far ahead of the latter but within a region extending over a size of order $\sqrt{T}$ to its right, the mean value of the particle number still grows exponentially with $Δx$, but its typical value is lower by a multiplicative factor consistent with $e^{-ζΔx^{2/3}}$, where $ζ$ is a number of order unity. These numerical results bring strong support to recent analytical calculations and conjectures in the infinite-time limit.