论文标题
在乳房溴化物钙钛矿纳米晶体的二维组件中的远程激子扩散
Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals
论文作者
论文摘要
Förster谐振能量传递(FRET)通过人工纳米级构建块组件通过人工纳米构建块组件进行的激子扩散可以用作新的光电设计元件来运输能量。但是,到目前为止,纳米晶体(NC)系统仅支持30 nm的扩散长度,这些扩散长度太小,无法在设备中有用。在这里,我们通过有序的二维溴化溴化物钙钛矿纳米晶体(PNC)的有序的,二维的组装(PNC),证明了FRET介导的激子扩散长度为200 nm,具有0.5 cm2/s的扩散率。通过稳态和时间分辨的光致发光(PL)显微镜直接测量激子扩散,其物理建模可深入了解传输过程。 PNCS高PL量子产率,较大的吸收横截面和高极化性以及组装的最小能量和几何障碍,可以促进这种高效的激子运输。这种FRET介导的激子扩散长度与钙钛矿光吸收深度相匹配,开辟了设计具有改进性能的新的光电设备架构的可能性,并提供了对基于PNC的基于PNC的OptOelectRonic设备的高转化效率的见解。
Förster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as a new optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported only diffusion length of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (PNC). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites optical absorption depth, opening the possibility to design new optoelectronic device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.