论文标题
在更高等级的变量分离中的标量产品上
On Scalar Products in Higher Rank Quantum Separation of Variables
论文作者
论文摘要
使用变量(SOV)的量子分离的框架(SOV)用于更高的级量子集成晶格模型[1],我们介绍了一些基础,以超越获得的完整传输矩阵频谱描述,并为计算本地运营商矩阵元素的计算开辟道路。这首先要获得所谓单独状态的标量产物的简单表达式(转移矩阵特征态或对其的一些简单概括)。在较高排名的情况下,预计左右SOV基础将是伪正交的,即对于给定的SoV共同向量,可能与所选右SOV的向量有多个不超过的重叠。为了简单起见,我们描述了我们的方法在$ \ Mathcal {y}(gl_3)$ n $站点的$ \ Mathcal {y}(gl_3)$ lattice模型的基本表示中重叠的方法,等级为2。共同辅助和Vector Sov base之间的非零耦合案例。虽然相应的Sov-Mesure保持相当简单且可能的实际用途,但我们解决了构建确实满足标准正交性的左右SOV基础的问题。在我们的方法中,SOV基地是通过使用保守指控的家族来构建的。这为我们提供了SOV基础建筑的巨大自由,并使我们能够选择一个保守指控的家族,这导致了正交的共同矢量/矢量SOV基础。在具有简单频谱和零决定因素的扭曲矩阵的情况下,我们首先定义了这样的选择。然后,我们将相关的保守电荷和正交SoV基础的家族概括为通用的简单频谱和可逆扭曲矩阵。在这种选择保守的费用和相关的正交SOV基础的选择下,单独状态的标量产品可大大简化,并采用类似于$ \ Mathcal {y}(y}(GL_2)$等级的形式。
Using the framework of the quantum separation of variables (SoV) for higher rank quantum integrable lattice models [1], we introduce some foundations to go beyond the obtained complete transfer matrix spectrum description, and open the way to the computation of matrix elements of local operators. This first amounts to obtain simple expressions for scalar products of the so-called separate states (transfer matrix eigenstates or some simple generalization of them). In the higher rank case, left and right SoV bases are expected to be pseudo-orthogonal, that is for a given SoV co-vector, there could be more than one non-vanishing overlap with the vectors of the chosen right SoV basis. For simplicity, we describe our method to get these pseudo-orthogonality overlaps in the fundamental representations of the $\mathcal{Y}(gl_3)$ lattice model with $N$ sites, a case of rank 2. The non-zero couplings between the co-vector and vector SoV bases are exactly characterized. While the corresponding SoV-measure stays reasonably simple and of possible practical use, we address the problem of constructing left and right SoV bases which do satisfy standard orthogonality. In our approach, the SoV bases are constructed by using families of conserved charges. This gives us a large freedom in the SoV bases construction, and allows us to look for the choice of a family of conserved charges which leads to orthogonal co-vector/vector SoV bases. We first define such a choice in the case of twist matrices having simple spectrum and zero determinant. Then, we generalize the associated family of conserved charges and orthogonal SoV bases to generic simple spectrum and invertible twist matrices. Under this choice of conserved charges, and of the associated orthogonal SoV bases, the scalar products of separate states simplify considerably and take a form similar to the $\mathcal{Y}(gl_2)$ rank one case.