论文标题

从还原还原:带有伪干净视频的视频修复

Restore from Restored: Video Restoration with Pseudo Clean Video

论文作者

Lee, Seunghwan, Cho, Donghyeon, Kim, Jiwon, Kim, Tae Hyun

论文摘要

在这项研究中,我们提出了一种称为“恢复从恢复的”的自我监督视频denoising方法。此方法通过在测试阶段使用伪干净的视频来微调预训练的网络。伪干净的视频是通过在基线网络上应用嘈杂的视频来获得的。通过采用完全卷积的神经网络(FCN)作为基线,我们可以改善视频性能,而无需准确的光流估计和注册步骤,这与许多常规的视频恢复方法相比,由于FCN的翻译模糊性。具体而言,所提出的方法可以利用多个连续框架(即补丁复发)存在的大量相似贴片;这些补丁可以大幅度提高基线网络的性能。我们使用拟议的基于自学的学习算法分析了微调视频Denoising网络的恢复性能,并证明FCN可以使用重复的贴剂而无需在相邻框架之间进行准确的注册。在我们的实验中,我们将提出的方法应用于最先进的Deoisiser,并表明我们的微调网络在DeNoSising绩效方面有了很大的改善。

In this study, we propose a self-supervised video denoising method called "restore-from-restored." This method fine-tunes a pre-trained network by using a pseudo clean video during the test phase. The pseudo clean video is obtained by applying a noisy video to the baseline network. By adopting a fully convolutional neural network (FCN) as the baseline, we can improve video denoising performance without accurate optical flow estimation and registration steps, in contrast to many conventional video restoration methods, due to the translation equivariant property of the FCN. Specifically, the proposed method can take advantage of plentiful similar patches existing across multiple consecutive frames (i.e., patch-recurrence); these patches can boost the performance of the baseline network by a large margin. We analyze the restoration performance of the fine-tuned video denoising networks with the proposed self-supervision-based learning algorithm, and demonstrate that the FCN can utilize recurring patches without requiring accurate registration among adjacent frames. In our experiments, we apply the proposed method to state-of-the-art denoisers and show that our fine-tuned networks achieve a considerable improvement in denoising performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源