论文标题

通过Adomian分解方法,原子玻色网中的涡流溶液凝结

Vortex solutions in atomic Bose-Einstein condensates via the Adomian Decomposition Method

论文作者

Harko, Tiberiu, Mak, Man Kwong, Leung, Chun Sing

论文摘要

我们使用Adomian分解方法研究了弱相互作用的玻璃体凝结物中具有任意拓扑电荷的涡流动力学,以在极坐标中求解非线性GROSS-PITAEVSKII方程。涡旋方程的溶液以无限功率序列的形式表达。将功率序列表示分别与均匀和谐波电位的GROSS-PITAEVSKII方程的确切数值解相提并论。我们发现分析结果与数值结果之间存在良好的一致性。

We study the dynamics of vortices with arbitrary topological charges in weakly interacting Bose-Einstein condensates using the Adomian Decomposition Method to solve the nonlinear Gross-Pitaevskii equation in polar coordinates. The solutions of the vortex equation are expressed in the form of infinite power series. The power series representations are compared with the exact numerical solutions of the Gross-Pitaevskii equation for the uniform and the harmonic potential, respectively. We find that there is a good agreement between the analytical and the numerical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源