论文标题

填充蜂窝状晶格上的对称自旋液体

Symmetric spin liquids on the stuffed honeycomb lattice

论文作者

Sahoo, Jyotisman, Flint, Rebecca

论文摘要

我们使用投影对称组分析来确定填充蜂窝状晶状体模型上的所有对称自旋液体。该晶格插入蜂窝,三角形和骰子晶格之间,始终保留六角形对称性,并且已经有一个旋转液体候选者Tbino $ _3 $,尽管在这里未考虑使用强的自旋轨道耦合。除了填充的蜂窝晶格本身外,我们还获得了对蜂窝和三角形晶格上潜在的自旋液体的宝贵洞察力,以及如何连接它们。例如,在蜂窝晶格上提出的Sublattice配对状态连接到均匀的Spinon Fermi表面,这可能与带环交换的三角形晶格有关,而在$ j_1-j_2 $ honeycomb和三角形晶格限制的$ j_1-j_2 $ honeycomb和三角形液体上都没有竞争力。特别是,我们发现了U(1)Dirac Spin液体的三个填充蜂窝状后代,人们被广泛认为可以在$ J_1-J_2 $三角形晶格上找到。我们还讨论了蜂窝限制附近的旋转液体如何可能解释lizn $ _2 $ mo $ $ _3 $ o $ $ _8 $的物理。

We use a projective symmetry group analysis to determine all symmetric spin liquids on the stuffed honeycomb lattice Heisenberg model. This lattice interpolates between honeycomb, triangular and dice lattices, always preserving hexagonal symmetry, and it already has one spin liquid candidate, TbInO$_3$, albeit with strong spin-orbit coupling not considered here. In addition to the stuffed honeycomb lattice itself, we gain valuable insight into potential spin liquids on the honeycomb and triangular lattices, as well as how they might be connected. For example, the sublattice pairing state proposed on the honeycomb lattice connects to the uniform spinon Fermi surface that may be relevant for the triangular lattice with ring exchange, while there are no spin liquids competitive on both the $J_1-J_2$ honeycomb and triangular lattice limits. In particular, we find three stuffed honeycomb descendants of the U(1) Dirac spin liquid widely believed to be found on the $J_1-J_2$ triangular lattice. We also discuss how spin liquids near the honeycomb limit can potentially explain the physics of LiZn$_2$Mo$_3$O$_8$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源