论文标题

通过基于顺序模型的优化学习对水分配网络的最佳控制

Learning Optimal Control of Water Distribution Networks through Sequential Model-based Optimization

论文作者

Candelieri, Antonio, Galuzzi, Bruno, Giordani, Ilaria, Archetti, Francesco

论文摘要

基于顺序模型的贝叶斯优化已成功地应用于几个应用程序域,其特征是复杂的搜索空间,例如自动化的机器学习和神经体系结构搜索。本文着重于最佳控制问题,提出了一个基于模型的贝叶斯优化框架,以学习最佳控制策略。提供了对问题的一般形式化,以及与城市水发出网络中泵送操作的优化有关的特定实例。报告了现实生活中的水分配网络上的相关结果,并比较了所提出的框架的不同可能选择。

Sequential Model-based Bayesian Optimization has been successful-ly applied to several application domains, characterized by complex search spaces, such as Automated Machine Learning and Neural Architecture Search. This paper focuses on optimal control problems, proposing a Sequential Model-based Bayesian Optimization framework to learn optimal control strategies. A quite general formalization of the problem is provided, along with a specific instance related to optimization of pumping operations in an urban Water Distri-bution Network. Relevant results on a real-life Water Distribution Network are reported, comparing different possible choices for the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源