论文标题

扩展物质弹跳场景中的幽灵免费$ f(r,\ mathcal {g})$重力与GW170817兼容

Extended matter bounce scenario in ghost free $f(R,\mathcal{G})$ gravity compatible with GW170817

论文作者

Elizalde, E., Odintsov, S. D., Oikonomou, V. K., Paul, Tanmoy

论文摘要

在幽灵免费$ f(r,\ mathcal {g})$模型的上下文中,研究了扩展的弹跳方案,其中比例因子的形式由$ a(t)=(a_0t^2 + 1)^n $给出。通过在\ cite {nojiri:2018ouv}中开发的Lagrange乘法器的存在来确保模型的幽灵无鬼字符。在此模型中,研究引力速度等于光速(等于在天然单位中的光速),从而与引人注目的事件GW170817兼容。结果表明,对于一类高斯键网(GB)耦合函数($ h(t)$)的情况,它会发生这种情况,该函数满足了$ \ ddot {h} = \ dot {h} h $的约束方程,并带有$ h $ th $ h $ the hubble参数。然后将该约束强加于幽灵的$ f(r,\ nathcal {g})$重力理论与GW170817事件保持一致,随后,对相应的非单明性弹跳宇宙学与上述规模因子进行了广泛的研究。该理论的“低曲率限制”中的耦合函数和拉格朗日乘数的形式是重建的,产生了$ n <1/2 $的可行近似值。相应地,通过求解宇宙学的扰动方程,可观察到的主要数量,即光谱指数,张量与标量比和运行索引,并与最新的Planck 2018数据确定并面临。对于与$ n <1/2 $相对应的那些参数制度的证明,与数据一致。这使得低曲率近似成为计算标量和张量功率谱的可行近似。

In the context of a ghost free $f(R,\mathcal{G})$ model, an extended matter bounce scenario is studied where the form of the scale factor is given by $a(t) = (a_0t^2 + 1)^n$. The ghost free character of the model is ensured by the presence of a Lagrange multiplier, as developed in \cite{Nojiri:2018ouv}. The conditions under which, in this model, the speed of gravitational waves becomes equal to the speed of light (equal to one, in natural units), thus becoming compatible with the striking event GW170817, is investigated. It is shown that this happens for a class of Gauss-Bonnet (GB) coupling functions ($h(t)$) which satisfies a constraint equation of the form $\ddot{h} = \dot{h}H$, with $H$ the Hubble parameter. This constraint is then imposed on the ghost free $f(R,\mathcal{G})$ gravity theory to be consistent with the GW170817 event, subsequently, the corresponding non-singular bouncing cosmology with the aforementioned scale factor is extensively studied. The forms of the coupling function and Lagrange multiplier in the "low curvature limit" of the theory are reconstructed, yielding a viable approximation for $n < 1/2$. Correspondingly, by solving the cosmological perturbation equation, the main observable quantities, namely the spectral index, tensor to scalar ratio, and the running index are determined and confronted with the latest Planck 2018 data. Consistency with the data is proven for those parametric regimes that which correspond to $n < 1/2$. This makes the low curvature approximation a viable one for calculating the scalar and tensor power spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源