论文标题

探究机器的概率验证

Towards Probabilistic Verification of Machine Unlearning

论文作者

Sommer, David Marco, Song, Liwei, Wagh, Sameer, Mittal, Prateek

论文摘要

被遗忘的权利,也称为删除权,是个人从存储它的实体中删除数据的权利。最近,欧盟的一般数据保护法规(GDPR)最近在法律上巩固了这个长期持有的概念的地位。因此,需要机制,用户可以验证服务提供商是否遵守其删除请求。在这项工作中,我们迈出了一个正式框架的第一步,以研究在提供机器学习作为服务(MLAAS)的系统的背景下,研究数据删除请求的此类验证机制(也称为机器)。我们的框架允许根据标准假设检验对任何验证机制进行严格的量化。此外,我们提出了一种新型的基于后门的验证机制,并证明了其在高信心中证明数据删除方面的有效性,从而为定量推断的机器学习提供了基础。 我们在一系列网络体系结构(例如多层感知器(MLP),卷积神经网络(CNN),剩余网络(RESNET)和长期短期内存(LSTM)以及超过5个不同的数据集以上。我们证明我们的方法对ML服务的准确性具有最小的影响,但提供了高度的信心验证。即使只有少数用户使用我们的系统来确定数据删除请求,我们提出的机制也起作用。特别是,只有5%的用户参与,用后门修改了一半的数据,并且仅使用30个测试查询,我们的验证机制既有假阳性和假负比率,低于$ 10^{ - 3} $。我们还通过针对使用最先进的后门防御方法的自适应对手进行测试来证明我们的方法的有效性。

The right to be forgotten, also known as the right to erasure, is the right of individuals to have their data erased from an entity storing it. The status of this long held notion was legally solidified recently by the General Data Protection Regulation (GDPR) in the European Union. Consequently, there is a need for mechanisms whereby users can verify if service providers comply with their deletion requests. In this work, we take the first step in proposing a formal framework to study the design of such verification mechanisms for data deletion requests -- also known as machine unlearning -- in the context of systems that provide machine learning as a service (MLaaS). Our framework allows the rigorous quantification of any verification mechanism based on standard hypothesis testing. Furthermore, we propose a novel backdoor-based verification mechanism and demonstrate its effectiveness in certifying data deletion with high confidence, thus providing a basis for quantitatively inferring machine unlearning. We evaluate our approach over a range of network architectures such as multi-layer perceptrons (MLP), convolutional neural networks (CNN), residual networks (ResNet), and long short-term memory (LSTM), as well as over 5 different datasets. We demonstrate that our approach has minimal effect on the ML service's accuracy but provides high confidence verification of unlearning. Our proposed mechanism works even if only a handful of users employ our system to ascertain compliance with data deletion requests. In particular, with just 5% of users participating, modifying half their data with a backdoor, and with merely 30 test queries, our verification mechanism has both false positive and false negative ratios below $10^{-3}$. We also show the effectiveness of our approach by testing it against an adaptive adversary that uses a state-of-the-art backdoor defense method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源