论文标题

中央康托尔设置为cantorval的差异的条件

Conditions for the difference set of a central Cantor set to be a Cantorval

论文作者

Nowakowski, Piotr, Filipczak, Tomasz

论文摘要

令$ c(λ)\ subset \ lbrack 0,1] $表示由序列$λ= \ left生成的中央cantor集(λ_{n} \ right)\ in \ left(0,\ frac {1} {1} {1} {2} {2} {2} {2} {2} {2} {2} {2} \ right)通过已知的三分法,$ c(λ)$的差异集$ c(λ)-c(λ)$是三个可能的集合之一:封闭间隔的有限结合,cantor套件和一个cantorval。我们的主要结果描述了$(λ_{n})$的有效条件,这些条件保证了$ c(λ)-c(λ)$是cantorval。我们表明这些条件可以以几种等效形式表示。在其他假设下,建立了Cantorval $ C(λ)-c(λ)$的度量。我们为一些快速收敛系列的成就集提供了证明定理的应用。

Let $C(λ)\subset \lbrack 0,1]$ denote the central Cantor set generated by a sequence $ λ= \left( λ_{n} \right) \in \left( 0,\frac{1}{2} \right) ^{\mathbb{N}}$. By the known trichotomy, the difference set $ C(λ)-C(λ)$ of $C(λ)$ is one of three possible sets: a finite union of closed intervals, a Cantor set, and a Cantorval. Our main result describes effective conditions for $(λ_{n})$ which guarantee that $C(λ)-C(λ)$ is a Cantorval. We show that these conditions can be expressed in several equivalent forms. Under additional assumptions, the measure of the Cantorval $C(λ)-C(λ)$ is established. We give an application of the proved theorems for the achievement sets of some fast convergent series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源