论文标题

QTIP:每个事件参数的基于流量模型的快速模拟改编

QTIP: Quick simulation-based adaptation of Traffic model per Incident Parameters

论文作者

Peled, Inon, Kamalakar, Raghuveer, Azevedo, Carlos Lima, Pereira, Francisco C.

论文摘要

当前数据驱动的流量预测模型通常通过大型数据集进行培训,例如几个月的速度和流动。这样的模型非常适合普通的道路状况,但是在最需要的情况下通常会失败:当交通遭受突然而严重的破坏(例如道路事件)时。在这项工作中,我们描述了QTIP:基于仿真的框架,用于在交通中断时对预测模型进行准确改编。简而言之,QTIP对受影响的道路进行多种情况,分析结果的实时模拟,并提出对普通预测模型的更改。 QTIP构建了事件的每个属性的模拟场景,这是由受影响车辆的立即遇险信号传达的。此类实时信号由车载监视系统提供,这些系统在世界范围内变得越来越普遍。我们在丹麦高速公路的案例研究中实验QTIP,结果表明,QTIP可以在道路事件的第一个关键分钟内改善交通预测。

Current data-driven traffic prediction models are usually trained with large datasets, e.g. several months of speeds and flows. Such models provide very good fit for ordinary road conditions, but often fail just when they are most needed: when traffic suffers a sudden and significant disruption, such as a road incident. In this work, we describe QTIP: a simulation-based framework for quasi-instantaneous adaptation of prediction models upon traffic disruption. In a nutshell, QTIP performs real-time simulations of the affected road for multiple scenarios, analyzes the results, and suggests a change to an ordinary prediction model accordingly. QTIP constructs the simulated scenarios per properties of the incident, as conveyed by immediate distress signals from affected vehicles. Such real-time signals are provided by In-Vehicle Monitor Systems, which are becoming increasingly prevalent world-wide. We experiment QTIP in a case study of a Danish motorway, and the results show that QTIP can improve traffic prediction in the first critical minutes of road incidents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源