论文标题

当人重新识别遇到换衣服时

When Person Re-identification Meets Changing Clothes

论文作者

Wan, Fangbin, Wu, Yang, Qian, Xuelin, Chen, Yixiong, Fu, Yanwei

论文摘要

人重新识别(REID)现在是基于AI的视频监视应用程序(例如特定人员搜索)的活跃研究主题,但是目标人可能会更换衣服(衣服不一致问题)的实际问题已长期忽略。本文首次系统地研究了这个问题。我们首先克服了缺乏合适数据集的困难,通过收集一个小但代表性的真实数据集来测试,同时构建一个大型逼真的合成数据集进行培训和更深入的研究。在我们的新数据集中,我们能够进行各种有趣的新实验,以研究衣服不一致的影响。我们发现,换衣服使里德(Reid)成为一个困难的问题,这使得在学习有效表示方面的困难以及挑战了先前的里德模型以识别看不见(新)衣服的人的概括能力。采用代表性的现有REID模型来在这种具有挑战性的环境中展示信息丰富的结果,我们还提供了一些初步的努力,以改善现有模型在处理数据中的衣服不一致问题方面的鲁棒性。我们认为,这项研究可以鼓舞人心,有助于鼓励朝这个方向朝着这一方向进行更多研究。该数据集可在项目网站上找到:https://wanfb.github.io/dataset.html。

Person re-identification (ReID) is now an active research topic for AI-based video surveillance applications such as specific person search, but the practical issue that the target person(s) may change clothes (clothes inconsistency problem) has been overlooked for long. For the first time, this paper systematically studies this problem. We first overcome the difficulty of lack of suitable dataset, by collecting a small yet representative real dataset for testing whilst building a large realistic synthetic dataset for training and deeper studies. Facilitated by our new datasets, we are able to conduct various interesting new experiments for studying the influence of clothes inconsistency. We find that changing clothes makes ReID a much harder problem in the sense of bringing difficulties to learning effective representations and also challenges the generalization ability of previous ReID models to identify persons with unseen (new) clothes. Representative existing ReID models are adopted to show informative results on such a challenging setting, and we also provide some preliminary efforts on improving the robustness of existing models on handling the clothes inconsistency issue in the data. We believe that this study can be inspiring and helpful for encouraging more researches in this direction. The dataset is available on the project website: https://wanfb.github.io/dataset.html.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源