论文标题

翻译的Dirichlet系列的Hardy空间

Hardy space of translated Dirichlet series

论文作者

Vidal, Tomás Fernández, Galicer, Daniel, Mereb, Martín, Sevilla-Peris, Pablo

论文摘要

我们研究翻译的Dirichlet系列$ \ Mathcal {H} _ {+} $的耐力空间。它由那些dirichlet系列$ \ sum a_n n n^{ - s} $组成,以至于某些(等效地,每个)$ 1 \ leq p <\ infty $,translation $ \ sum {a_ {a_ {n}} n^{ - (s+\ frac {1}} $ a} $σ> 0 $。我们证明,该集合具有由eminorms $ \ left \ left \ {\ vert \ cdot \ vert_ {2,k} \ right \} _ {k \ in \ mathbb {n}} $(其中) $ \ vert \ sum {a_ {n} n^{ - s}}} \ vert_ {2,k} $定义为$ \ big \ big \ vert \ sum {a_n n n^{ - (s+\ frac {1} {1} {k}}}}}}}}}}}}}}}}}}} \ big \ vert _ {\ Mathcal {h}^{2}} $)是一个fréchet空间,是Schwartz和非核。此外,dirichlet yourmials $ \ {n^{ - s} \} _ {n \ in \ mathbb n} $是$ \ mathcal h _+$的无条件schauder。本着戈登(Gordon)和赫迪马姆(Hedenmalm)作品的精神,我们完全描述了翻译迪里奇(Dirichlet)系列的耐力空间上的作曲操作员。此外,我们在$ \ Mathcal {h} _ {+} $上研究叠加运算符,并显示每个多项式都定义了此类操作员。我们在整个功能的系数上介绍了某些足够的条件,以定义叠加算子。依靠数字理论技术,我们展示了一些不提供叠加算子的示例。我们最终研究了分化和集成运算符对这些空间的作用。

We study the Hardy space of translated Dirichlet series $\mathcal{H}_{+}$. It consists on those Dirichlet series $\sum a_n n^{-s}$ such that for some (equivalently, every) $1 \leq p < \infty$, the translation $\sum{a_{n}}n^{-(s+\frac{1}σ)}$ belongs to the Hardy space $\mathcal{H}^{p}$ for every $σ>0$. We prove that this set, endowed with the topology induced by the seminorms $\left\{\Vert\cdot\Vert_{2,k}\right\}_{k\in\mathbb{N}}$ (where $\Vert\sum{a_{n}n^{-s}}\Vert_{2,k}$ is defined as $\big\Vert\sum{a_n n^{-(s+\frac{1}{k})}} \big\Vert_{\mathcal{H}^{2}}$), is a Fréchet space which is Schwartz and non nuclear. Moreover, the Dirichlet monomials $\{n^{-s}\}_{n \in \mathbb N}$ are an unconditional Schauder basis of $\mathcal H_+$. In the spirit of Gordon and Hedenmalm's work, we completely characterize the composition operator on the Hardy space of translated Dirichlet series. Moreover, we study the superposition operators on $\mathcal{H}_{+}$ and show that every polynomial defines an operator of this kind. We present certain sufficient conditions on the coefficients of an entire function to define a superposition operator. Relying on number theory techniques we exhibit some examples which do not provide superposition operators. We finally look at the action of the differentiation and integration operators on these spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源