论文标题
从内层中的Strahl电子推断出的冠状电子温度:Parker太阳探针和Helios观测值
Coronal Electron Temperature inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios observations
论文作者
论文摘要
电子速度分布函数的形状在太阳风加速度的动力学中起着重要作用。电子通常用三个组件建模,即核心,光环和strahl。我们研究了内层内的快速strahl电子在其起源处保留有关冠状电子温度的信息。我们分析了通过两个任务获得的数据,跨越65至215 r $ _s $的Helios和Parker Solar Probe(PSP)在太阳周围的前两个轨道中触及35 r $ _S $。电子strahl的特征是两个参数,即俯仰角宽度(PAW)和Strahl平行温度(t $ _ {s \ Parallel} $)。 PSP观察证实了Strahl Paw对核心平行等离子体β($β_{ec \ Parallel} $)\ citep {bercic2019}的依赖性。 PSP测量的大多数Strahl看起来很狭窄,PAW升至30 $^o $。与磁场对齐的Strahl速度分布函数的部分是针对由麦克斯韦分布函数很好地描述的测得的能量范围。发现T $ _ {S \ Parallel} $与太阳速度相关,并且独立于径向距离。这些观察结果表明,T $ _ {s \ Parallel} $带有有关冠状电子温度的信息。所获得的值与使用光谱法测得的冠状温度一致(David等人2998),而PSP的第一个轨道期间推断的太阳风源区域与使用PFSS模型的预测一致(Bale等人,2019年,Badman等,2019,Badman等,2019)。
The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modelled with three components, the core, the halo, and the strahl. We investigate how well the fast strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analysed the data obtained by two missions, Helios spanning the distances between 65 and 215 R$_S$, and Parker Solar Probe (PSP) reaching down to 35 R$_S$ during its first two orbits around the Sun. The electron strahl was characterised with two parameters, pitch-angle width (PAW), and the strahl parallel temperature (T$_{s\parallel}$). PSP observations confirm the already reported dependence of strahl PAW on core parallel plasma beta ($β_{ec\parallel}$)\citep{Bercic2019}. Most of the strahl measured by PSP appear narrow with PAW reaching down to 30$^o$. The portion of the strahl velocity distribution function aligned with the magnetic field is for the measured energy range well described by a Maxwellian distribution function. T$_{s\parallel}$ was found to be anti-correlated with the solar wind velocity, and independent of radial distance. These observations imply that T$_{s\parallel}$ carries the information about the coronal electron temperature. The obtained values are in agreement with coronal temperatures measured using spectroscopy (David et al. 2998), and the inferred solar wind source regions during the first orbit of PSP agree with the predictions using a PFSS model (Bale et al. 2019, Badman et al. 2019).