论文标题

在Navier-Stokes液体中自行螺旋体稳定运动的最佳边界控制

Optimal boundary control for steady motions of a self-propelled body in a Navier-Stokes liquid

论文作者

Hishida, Toshiaki, Silvestre, Ana Leonor, Takahashi, Takéo

论文摘要

考虑一个刚体的$ {\ Mathcal S} \ subset {\ Mathbb r}^3 $浸入无限扩展的Navier-Stokes液体中,以及从附加到$ {\ Mathcal S} $的参考框架中描述的身体流体交互系统的运动。我们对这个耦合系统的稳定运动感兴趣,其中流体占据的区域是外部域$ω= {\ Mathbb r}^3 \ setMinus {\ Mathcal s} $。本文讨论了使用边界控制$ v _*$的问题,在整个$ \partialΩ$上或仅在一部分$γ$ of $ \partialΩ$上,以产生$ {\ Mathcal s} $的自推销运动,并使用目标速度$ v(x):x+em x $ partize partiavity $ v(x $ partiage $ v(x):首先,从流体的能量方程中得出了适当的阻力功能,该问题被提出为最佳边界控制问题。然后为局部控件解决了最小化问题,以便supp $ v _*\ subsetγ$,以及切向控件,即,即$ v _*\ cdot n | _ {\ partialω} = 0 $,其中$ n $是正常向外的单位对$ \ partialω$。我们证明了最佳解决方案的存在,证明控制对状态映射的Gâteaux导数合理,建立了相应的伴随方程的良好性,最后是一阶最佳条件。结果是在对目标的限制下获得的,$ |ξ| $和$ |ω| $以及边界控件。

Consider a rigid body ${\mathcal S} \subset {\mathbb R}^3$ immersed in an infinitely extended Navier-Stokes liquid and the motion of the body-fluid interaction system described from a reference frame attached to ${\mathcal S}$. We are interested in steady motions of this coupled system, where the region occupied by the fluid is the exterior domain $Ω= {\mathbb R}^3 \setminus {\mathcal S}$. This paper deals with the problem of using boundary controls $v_*$, acting on the whole $\partialΩ$ or just on a portion $Γ$ of $\partialΩ$, to generate a self-propelled motion of ${\mathcal S}$ with a target velocity $V(x):=ξ+ω\times x$ and to minimize the drag about ${\mathcal S}$. Firstly, an appropriate drag functional is derived from the energy equation of the fluid and the problem is formulated as an optimal boundary control problem. Then the minimization problem is solved for localized controls, such that supp $v_*\subset Γ$, and for tangential controls, i.e, $v_*\cdot n|_{\partial Ω}=0$, where $n$ is the outward unit normal to $\partial Ω$. We prove the existence of optimal solutions, justify the Gâteaux derivative of the control-to-state map, establish the well-posedness of the corresponding adjoint equations and, finally, derive the first order optimality conditions. The results are obtained under smallness restrictions on the objectives $|ξ|$ and $|ω|$ and on the boundary controls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源