论文标题
概率的自我中心运动校正激光雷达点云和对移动平台的相机图像投影
Probabilistic Egocentric Motion Correction of Lidar Point Cloud and Projection to Camera Images for Moving Platforms
论文作者
论文摘要
来自异质传感器的传感器数据融合对于在涉及移动平台的各种机器人应用中的强大感知至关重要,例如自动驾驶汽车导航。特别是,组合摄像头和激光镜传感器可以将周围环境的精确范围投影到视觉图像上。它还可以将每个LiDAR点标记为3D映射的视觉分割/分类结果,从而有助于对场景的更高层次的了解。然而,由于固有和外在传感器校准,该任务被认为是非平凡的,以及由于平台的自我运动而导致的激光点的变形。尽管存在许多LIDAR自我运动校正方法,但由于自我运动估计的不确定性而导致的校正过程中的误差无法完全删除。因此,必须考虑该问题是一个概率过程,在这种概率过程中,对自我动作估计的不确定性进行了建模并始终如一地考虑。该论文研究了概率激光痛于自我动作校正和激光镜像,其中纳入了自我运动估计的不确定性和感觉测量中的时间抖动。在模拟和使用从宽角摄像机和16梁扫描激光雷达的电动汽车中收集的现实世界数据中验证了所提出的方法。
The fusion of sensor data from heterogeneous sensors is crucial for robust perception in various robotics applications that involve moving platforms, for instance, autonomous vehicle navigation. In particular, combining camera and lidar sensors enables the projection of precise range information of the surrounding environment onto visual images. It also makes it possible to label each lidar point with visual segmentation/classification results for 3D mapping, which facilitates a higher level understanding of the scene. The task is however considered non-trivial due to intrinsic and extrinsic sensor calibration, and the distortion of lidar points resulting from the ego-motion of the platform. Despite the existence of many lidar ego-motion correction methods, the errors in the correction process due to uncertainty in ego-motion estimation are not possible to remove completely. It is thus essential to consider the problem a probabilistic process where the ego-motion estimation uncertainty is modelled and considered consistently. The paper investigates the probabilistic lidar ego-motion correction and lidar-to-camera projection, where both the uncertainty in the ego-motion estimation and time jitter in sensory measurements are incorporated. The proposed approach is validated both in simulation and using real-world data collected from an electric vehicle retrofitted with wide-angle cameras and a 16-beam scanning lidar.