论文标题

起搏器:中级教师知识蒸馏,用于自在的卷积神经网络

Pacemaker: Intermediate Teacher Knowledge Distillation For On-The-Fly Convolutional Neural Network

论文作者

Son, Wonchul, Kim, Youngbin, Song, Wonseok, Moon, Youngsu, Hwang, Wonjun

论文摘要

需要具有非常低的性能系统(例如芯片(SOC)和嵌入式设备等非常低的性能系统等的直接计算过程。本文将起搏器知识蒸馏作为中间合奏教师在这些系统中使用卷积神经网络。对于即时系统,我们使用正常NXN形状过滤器使用1 XN形状的学生模型来考虑学生模型。我们注意到有关培训学生模型的三个点,该模型是由于使用直通过滤器而引起的。首先,相同的深度但不可避免的薄模型压缩。其次,仅必须选择水平场引起的较大容量差距和参数尺寸差距,而不是垂直接收。第三,直接蒸馏的性能不稳定和降解。为了解决这些问题,我们建议中级老师,名为Pacemaker,为一名在线学生。因此,可以逐步从起搏器和原始老师接受培训。实验证明我们所提出的方法具有显着的性能(准确性)改进:在CIFAR100上,WRN-40-4的5.39%比传统的知识蒸馏增长了5.39%,而传统知识蒸馏的性能甚至低于基线。我们解决了火车的不稳定性,即通过应用提出的方法起搏器知识蒸馏来降低偏差范围,从而在没有提出的方法的情况下应用常规知识蒸馏时就会发生。

There is a need for an on-the-fly computational process with very low performance system such as system-on-chip (SoC) and embedded device etc. This paper presents pacemaker knowledge distillation as intermediate ensemble teacher to use convolutional neural network in these systems. For on-the-fly system, we consider student model using 1xN shape on-the-fly filter and teacher model using normal NxN shape filter. We note three points about training student model, caused by applying on-the-fly filter. First, same depth but unavoidable thin model compression. Second, the large capacity gap and parameter size gap due to only the horizontal field must be selected not the vertical receptive. Third, the performance instability and degradation of direct distilling. To solve these problems, we propose intermediate teacher, named pacemaker, for an on-the-fly student. So, student can be trained from pacemaker and original teacher step by step. Experiments prove our proposed method make significant performance (accuracy) improvements: on CIFAR100, 5.39% increased in WRN-40-4 than conventional knowledge distillation which shows even low performance than baseline. And we solve train instability, occurred when conventional knowledge distillation was applied without proposed method, by reducing deviation range by applying proposed method pacemaker knowledge distillation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源