论文标题
Semigroup C* - 代数和部分交叉产品的K理论
K-theory for semigroup C*-algebras and partial crossed products
论文作者
论文摘要
使用带有系数的鲍姆 - 康涅狄格州猜想,我们开发了一个K理论公式,用于减少$ 0 $ 0 $ - $ E $ - 自然的反向半群,或等效地用于某些减少的部分交叉产品。对于半群c* - 代数,我们获得了Cuntz,Echterhoff和作者的先前K理论结果的概括,而无需假设Toeplitz条件。作为应用,我们讨论了Artin Monoids,Baumslag-soliatr-soloid,单级单型单体,C* - 代数,由数字理论的正确定期表示以及C*-Elgebras产生的c* - 代数产生的c* - 代数在瓷砖上产生。
Using the Baum-Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly $0$-$E$-unitary inverse semigroups, or equivalently, for certain reduced partial crossed products. In the case of semigroup C*-algebras, we obtain a generalization of previous K-theory results of Cuntz, Echterhoff and the author without having to assume the Toeplitz condition. As applications, we discuss semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids, one-relator monoids, C*-algebras generated by right regular representations of semigroups from number theory, and C*-algebras of inverse semigroups arising in the context of tilings.