论文标题
GMAD示例的主动微调改善了盲图质量评估
Active Fine-Tuning from gMAD Examples Improves Blind Image Quality Assessment
论文作者
论文摘要
图像质量评估(IQA)的研究历史悠久,并通过利用深度神经网络(DNNS)的最新进展取得了重大进展。尽管现有IQA数据集上的相关数很高,但基于DNN的模型可能很容易在组最大分化(GMAD)竞争中伪造,并确定了强烈的反例。在这里,我们表明GMAD示例可用于改善盲人IQA(BIQA)方法。具体而言,我们首先使用多个嘈杂注释器预先培训基于DNN的BIQA模型,然后在合成扭曲的图像的多个主题评级数据库上进行微调,从而导致表现最好的基线模型。然后,我们通过将基线模型与GMAD中的一组全参考IQA方法进行比较来寻求图像。由此产生的GMAD示例最有可能揭示基线的相对弱点,并提出了潜在的细化方法。我们在控制良好的实验室环境中为所选图像查询地面的真实质量注释,并进一步对GMAD和现有数据库的人等级图像的组合进行了进一步调整。可能会迭代此过程,从而使BIQA的GMAD示例中有积极的进行渐进的微调。我们在大规模的未标记图像集上证明了我们的主动学习方案的可行性,并表明,微调方法可提高GMAD的普遍性,而不会破坏先前训练的数据库的性能。
The research in image quality assessment (IQA) has a long history, and significant progress has been made by leveraging recent advances in deep neural networks (DNNs). Despite high correlation numbers on existing IQA datasets, DNN-based models may be easily falsified in the group maximum differentiation (gMAD) competition with strong counterexamples being identified. Here we show that gMAD examples can be used to improve blind IQA (BIQA) methods. Specifically, we first pre-train a DNN-based BIQA model using multiple noisy annotators, and fine-tune it on multiple subject-rated databases of synthetically distorted images, resulting in a top-performing baseline model. We then seek pairs of images by comparing the baseline model with a set of full-reference IQA methods in gMAD. The resulting gMAD examples are most likely to reveal the relative weaknesses of the baseline, and suggest potential ways for refinement. We query ground truth quality annotations for the selected images in a well controlled laboratory environment, and further fine-tune the baseline on the combination of human-rated images from gMAD and existing databases. This process may be iterated, enabling active and progressive fine-tuning from gMAD examples for BIQA. We demonstrate the feasibility of our active learning scheme on a large-scale unlabeled image set, and show that the fine-tuned method achieves improved generalizability in gMAD, without destroying performance on previously trained databases.