论文标题
kashiwara和Lichtin之后,B功能根的上限
Upper bounds for roots of B-functions, following Kashiwara and Lichtin
论文作者
论文摘要
通过建立喀什瓦拉(Kashiwara)引入并由Lichtin提出的方法,我们根据奇异性的对数分辨率为与常规函数F相关的某些B功能的根提供了上限。作为应用程序,我们以更多的基本方法的结果恢复了Budur和Saito的结果,该方法以F的V滤光度来描述F的乘数理想,以及第二名作者的结果Popa在日志分辨率方面为F的最小指数提供了较低的指数。
By building on a method introduced by Kashiwara and refined by Lichtin, we give upper bounds for the roots of certain b-functions associated to a regular function f in terms of a log resolution of singularities. As applications, we recover with more elementary methods a result of Budur and Saito describing the multiplier ideals of f in terms of the V-filtration of f and a result of the second named author with Popa giving a lower bound for the minimal exponent of f in terms of a log resolution.