论文标题
紧凑型kähler三倍,以阿贝尔人的最大等级的作用
Compact Kähler threefolds with the action of an abelian group of maximal rank
论文作者
论文摘要
在本说明中,我们研究了正常的紧凑型kähler(可能是单数)三倍$ x $,承认了一个自由的亚伯群$ g $最大排名的行动,所有的非平凡元素都是肯定的。如果进一步假定这种$ x $仅具有终端奇点,那么我们证明它是与复杂$ 3 $ -torus的准典范的合理连接的投影三倍或双形型。
In this note, we study the normal compact Kähler (possibly singular) threefold $X$ admitting the action of a free abelian group $G$ of maximal rank, all the non-trivial elements of which are of positive entropy. If such $X$ is further assumed to have only terminal singularities, then we prove that it is either a rationally connected projective threefold or bimeromorphic to a quasi-étale quotient of a complex $3$-torus.