论文标题

Deeplens:实体摘要的深度学习

DeepLENS: Deep Learning for Entity Summarization

论文作者

Liu, Qingxia, Cheng, Gong, Qu, Yuzhong

论文摘要

实体摘要是知识图的重要任务。尽管现有方法主要是无监督的,但我们提出了一个简单而有效的深度学习模型,我们利用文本语义来编码三元组,并且我们根据其相互依存的其他三元组来得分三倍。 Deeplens在公共基准上大大优于现有方法。

Entity summarization has been a prominent task over knowledge graphs. While existing methods are mainly unsupervised, we present DeepLENS, a simple yet effective deep learning model where we exploit textual semantics for encoding triples and we score each candidate triple based on its interdependence on other triples. DeepLENS significantly outperformed existing methods on a public benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源