论文标题

联邦快递:数据驱动的合作社本地化和位置数据处理的联合学习框架

FedLoc: Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing

论文作者

Yin, Feng, Lin, Zhidi, Xu, Yue, Kong, Qinglei, Li, Deshi, Theodoridis, Sergios, Shuguang, Cui

论文摘要

在此概述论文中,根据新兴的机器学习和大数据方法,考虑了基于数据驱动的学习模型的合作定位和位置数据处理。我们首先回顾(1)在联邦学习的背景下(2)两个广泛使用的学习模型,即深神经网络模型和高斯过程模型,以及(3)各种分布式模型超参数优化方案。然后,我们演示了各种实用用例,这些用例总结了标准,新出版和未发表的作品的混合物,这些作品涵盖了广泛的位置服务,包括协作性静态定位/指纹,室内目标跟踪,使用低spatio-spatio-spatio-stamporal无线交通流量数据建模和预测。实验结果表明,一组运行分布式算法的协作移动用户可以实现接近集中式的数据拟合和预测性能。所有被调查的用例均属于我们新提出的联合本地化(FedLoc)框架,该框架的目标是协作建立准确的位置服务而不牺牲用户隐私,尤其是与其地理轨迹相关的敏感信息。本文结尾还讨论了未来的研究方向。

In this overview paper, data-driven learning model-based cooperative localization and location data processing are considered, in line with the emerging machine learning and big data methods. We first review (1) state-of-the-art algorithms in the context of federated learning, (2) two widely used learning models, namely the deep neural network model and the Gaussian process model, and (3) various distributed model hyper-parameter optimization schemes. Then, we demonstrate various practical use cases that are summarized from a mixture of standard, newly published, and unpublished works, which cover a broad range of location services, including collaborative static localization/fingerprinting, indoor target tracking, outdoor navigation using low-sampling GPS, and spatio-temporal wireless traffic data modeling and prediction. Experimental results show that near centralized data fitting- and prediction performance can be achieved by a set of collaborative mobile users running distributed algorithms. All the surveyed use cases fall under our newly proposed Federated Localization (FedLoc) framework, which targets on collaboratively building accurate location services without sacrificing user privacy, in particular, sensitive information related to their geographical trajectories. Future research directions are also discussed at the end of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源