论文标题
剩余的处理时间排队的最短交通缩放限制,并带有沉重的尾部处理时间分布
Heavy Traffic Scaling Limits for shortest remaining processing time queues with heavy tailed processing time distributions
论文作者
论文摘要
我们研究在剩余的处理时间(SRPT)调度策略下运行的单个服务器队列;也就是说,服务器先发制人的工作剩余时间最短。在这项工作中,我们有兴趣研究适当缩放度量值的状态描述符的渐近行为,这些状态描述了SRPT排队系统的演变。 Gromoll,Kruk和Puha(2011)在扩散缩放下研究了这个问题。在处理时间分布在适当条件下具有无界支持的情况下,它们表明扩散缩放度量的分布将分布收敛到相同零的过程。在Puha(2015)中,对于处理时间分布具有无界支撑和轻尾的设置,表明队列长度过程的非标准尺度显示会导致状态太空崩溃的形式,从而导致非零限制。在当前的工作中,我们考虑处理时间分布具有有限的第二瞬间并定期改变尾巴的情况。我们表明,在非标准缩放下,测量值的过程在度量路径空间中分布收敛。与以前的结果形成鲜明对比,没有状态空间崩溃。然而,对极限的描述很简单,并且根据特定的$ \ mathbb {r} _+$ rualted随机字段明确给出,这是由单个布朗尼运动确定的。在此过程中,我们建立了适当缩放的工作量和队列长度过程的收敛性。我们还表明,随着工作处理时间的分布的尾巴以适当的方式变得更轻,限制队列长度过程与限制工作负载过程之间的差异将收敛到零,从而接近了状态空间崩溃的行为。
We study a single server queue operating under the shortest remaining processing time (SRPT) scheduling policy; that is, the server preemptively serves the job with the shortest remaining processing time first. In this work we are interested in studying the asymptotic behavior of suitably scaled measure-valued state descriptors that describe the evolution of a sequence of SRPT queuing systems. Gromoll, Kruk, and Puha (2011) have studied this problem under diffusive scaling. In the setting where the processing time distributions have unbounded support, under suitable conditions, they show that the diffusion scaled measures converge in distribution to the process that is identically zero. In Puha (2015) for the setting where the processing time distributions have unbounded support and light tails, a non-standard scaling of the queue length process is shown to give rise to a form of state space collapse that results in a nonzero limit. In the current work we consider the case where processing time distributions have finite second moments and regularly varying tails. We show that the measure valued process, under a non-standard scaling, converges in distribution in the space of paths of measures. In sharp contrast with previous results, there is no state space collapse. Nevertheless, the description of the limit is simple and given explicitly in terms of a certain $\mathbb{R}_+$ valued random field which is determined from a single Brownian motion. Along the way we establish convergence of suitably scaled workload and queue length processes. We also show that as the tail of the distribution of job processing times becomes lighter in an appropriate fashion, the difference between the limiting queue length process and the limiting workload process converges to zero, thereby approaching the behavior of state space collapse.