论文标题
赤道甲的逆流趋势
Convergence of ergodic-martingale paraproducts
论文作者
论文摘要
在本说明中,我们介绍了一系列双线性操作员,这些序列以非平凡的方式统一了千古的平均值和落后的赛。我们在$ l^p $ norms的范围内建立了它的融合,并离开其A.S.融合是一个开放问题。这个问题与A.S.双向偏跑平均值相对于两个通勤变换的收敛。
In this note we introduce a sequence of bilinear operators that unify ergodic averages and backward martingales in a nontrivial way. We establish its convergence in a range of $L^p$-norms and leave its a.s. convergence as an open problem. This problem shares some similarities with a well-known unresolved conjecture on a.s. convergence of double ergodic averages with respect to two commuting transformations.