论文标题
马丁在凸锥中随机行走的边界
Martin boundary of random walks in convex cones
论文作者
论文摘要
我们确定了局限于多维凸锥的零饮用随机步行的绿色函数的渐近行为。结果,我们证明这些过程有独特的阳性离散谐波函数(达到乘法常数)。换句话说,马丁边界还原为单身人士。
We determine the asymptotic behavior of the Green function for zero-drift random walks confined to multidimensional convex cones. As a consequence, we prove that there is a unique positive discrete harmonic function for these processes (up to a multiplicative constant); in other words, the Martin boundary reduces to a singleton.