论文标题

DASNET:双重注意完全卷积的暹罗网络,用于更改高分辨率卫星图像的检测

DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images

论文作者

Chen, Jie, Yuan, Ziyang, Peng, Jian, Chen, Li, Huang, Haozhe, Zhu, Jiawei, Liu, Yu, Li, Haifeng

论文摘要

更改检测是遥感图像处理的基本任务。研究目标是识别感兴趣的变化信息,并将无关的变化信息过滤为干扰因素。最近,深度学习的兴起为变更检测提供了新的工具,这些工具产生了令人印象深刻的结果。但是,可用的方法主要关注多阶段遥感图像和缺乏伪变换信息之间的差异信息。为了克服当前方法对伪改变的缺乏性,在本文中,我们提出了一种新方法,即,双重专注于完全卷积的暹罗网络(DASNET),用于高分辨率图像中的变化检测。通过双重注意机制,捕获了远程依赖性以获得更具判别特征表示形式,以增强模型的识别性能。此外,不平衡的样本是变更检测的严重问题,即未更改的样本远不止更改样本,这是导致伪变化的主要原因之一。我们提出了加权双边距对比度损失,以通过惩罚对不变特征对的关注并增加对变化功能对的关注来解决这个问题。我们方法在更改检测数据集(CDD)和建筑物变化检测数据集(BCDD)方面的实验结果表明,与其他基线方法相比,在F1分数中,提出的方法分别实现了2.1 \%和3.6 \%的最大改进。我们的Pytorch实施可在https://github.com/lehaifeng/dasnet上获得。

Change detection is a basic task of remote sensing image processing. The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise of deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudo-change information. To overcome the lack of resistance of current methods to pseudo-changes, in this paper, we propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images. Through the dual-attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e. unchanged samples are much more than changed samples, which is one of the main reasons resulting in pseudo-changes. We put forward the weighted double margin contrastive loss to address this problem by punishing the attention to unchanged feature pairs and increase attention to changed feature pairs. The experimental results of our method on the change detection dataset (CDD) and the building change detection dataset (BCDD) demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.1\% and 3.6\%, respectively, in the F1 score. Our Pytorch implementation is available at https://github.com/lehaifeng/DASNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源