论文标题

使用低剂量CBCT图像的肺癌患者生存预测的新型放射素特征

Novel Radiomic Feature for Survival Prediction of Lung Cancer Patients using Low-Dose CBCT Images

论文作者

Veduruparthi, Bijju Kranthi, Mukherjee, Jayanta, Das, Partha Pratim, Arunsingh, Moses, Shrimali, Raj Kumar, Prasath, Sriram, Ray, Soumendranath, Chatterjee, Sanjay

论文摘要

预测患者在肿瘤进展中的生存能力对于估计治疗方案的有效性很有用。在我们的工作中,我们提出了一个模型,以考虑肿瘤的异质性,以预测生存。肿瘤异质性是通过将图像中与肿瘤总量(GTV)相结合的信息结合的信息来测量其质量的。我们提出了一种新型特征,与现有使用GTV的现有模型相比,GTV(TMG)内的肿瘤质量(TMG)内提高了可生存性的预测。从图像数据中计算出患者TMG的每周变化,也从细胞的存活率模型中估算。从细胞生存能力模型获得的参数是治疗期间TMG变化的指示。我们将这些参数与其他患者元数据一起进行生存分析和回归。使用这些数据进行了COX的比例危害生存回归。当模型中使用TMG而不是GTV时,观察到平均一致性指数从0.47提高到0.64。实验表明,反应性和无反应性患者的治疗反应有所不同,并且该建议的方法可用于预测患者的生存能力。

Prediction of survivability in a patient for tumor progression is useful to estimate the effectiveness of a treatment protocol. In our work, we present a model to take into account the heterogeneous nature of a tumor to predict survival. The tumor heterogeneity is measured in terms of its mass by combining information regarding the radiodensity obtained in images with the gross tumor volume (GTV). We propose a novel feature called Tumor Mass within a GTV (TMG), that improves the prediction of survivability, compared to existing models which use GTV. Weekly variation in TMG of a patient is computed from the image data and also estimated from a cell survivability model. The parameters obtained from the cell survivability model are indicatives of changes in TMG over the treatment period. We use these parameters along with other patient metadata to perform survival analysis and regression. Cox's Proportional Hazard survival regression was performed using these data. Significant improvement in the average concordance index from 0.47 to 0.64 was observed when TMG is used in the model instead of GTV. The experiments show that there is a difference in the treatment response in responsive and non-responsive patients and that the proposed method can be used to predict patient survivability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源