论文标题

解构有效的非炎性剂量的二次玻色剂汉密尔顿动力学

Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians

论文作者

Flynn, Vincent P., Cobanera, Emilio, Viola, Lorenza

论文摘要

与他们的费米尼克(Fermionic)同行不同,Hermitian二次玻色粒汉密尔顿人的动力学受通常非热的Bogoliubov-de Gennes Gennes有效的哈密顿式的统治。这种潜在的非热性产生了动态稳定的态度,因此所有可观察到的时间都会在时间上发生有限的进化,而动态不稳定的态度至少在某些可观察到的情况下无界的进化。我们表明,稳定过渡可以根据适当的概括性$ \ MATHCAL {P} \ MATHCAL {T} $对称性来归类,当对角度的特殊点在参数空间中的特殊点上丢失时,该均可能会损坏,而当否定性的eigenvalues splate vele vere neal eigenvalues splate neal dia dia nimable nimable nie di dia a di dia a dia n di diaal alsy nimabizalizalizalizalizal均可丢失。通过在不确定的内部产品空间中利用凯林稳定性理论的工具,我们引入了稳定相变的指标,该指标自然地将相位刚性的概念从非铁量量子力学扩展到骨环设置。作为一个范式的例子,我们完全表征了在广泛的边界条件下与基塔夫 - 马约拉那链的骨相似的稳定相图。特别是,我们在相关的传输特性和不稳定性的发作之间建立了联系,并认为参数空间中的稳定区域在热力学极限中成为零的尺寸零。我们的分析还表明,在费米子基塔伊夫链中支持Majorana零模式的边界条件完全相同,与玻色链中的稳定性相同。

Unlike their fermionic counterparts, the dynamics of Hermitian quadratic bosonic Hamiltonians are governed by a generally non-Hermitian Bogoliubov-de Gennes effective Hamiltonian. This underlying non-Hermiticity gives rise to a dynamically stable regime, whereby all observables undergo bounded evolution in time, and a dynamically unstable one, whereby evolution is unbounded for at least some observables. We show that stability-to-instability transitions may be classified in terms of a suitably generalized $\mathcal{P}\mathcal{T}$ symmetry, which can be broken when diagonalizability is lost at exceptional points in parameter space, but also when degenerate real eigenvalues split off the real axis while the system remains diagonalizable. By leveraging tools from Krein stability theory in indefinite inner-product spaces, we introduce an indicator of stability phase transitions, which naturally extends the notion of phase rigidity from non-Hermitian quantum mechanics to the bosonic setting. As a paradigmatic example, we fully characterize the stability phase diagram of a bosonic analogue to the Kitaev-Majorana chain under a wide class of boundary conditions. In particular, we establish a connection between phase-dependent transport properties and the onset of instability, and argue that stable regions in parameter space become of measure zero in the thermodynamic limit. Our analysis also reveals that boundary conditions that support Majorana zero modes in the fermionic Kitaev chain are precisely the same that support stability in the bosonic chain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源