论文标题

通过加权比较器网络增强答案集优化

Boosting Answer Set Optimization with Weighted Comparator Networks

论文作者

Bomanson, Jori, Janhunen, Tomi

论文摘要

答案集编程(ASP)是建模知识密集域并解决具有挑战性的推理问题的范式。在ASP求解中,典型的策略是通过将复杂规则重写为更简单的规则来预处理问题实例。归一化是一个重写过程,它完全删除了扩展规则类型,而有利于正常规则。最近,这种技术导致了ASP中的优化重写,目标是通过重构感兴趣的优化标准来提高答案集优化。在本文中,我们提出了一种基于比较器网络优化重写的新颖,一般和有效的技术,该技术是重新排序向量元素的特定电路。这个想法是将比较器网络的ASP编码连接到要优化的文字,并将这些文字的权重重新分配到网络结构上。该编码以结构化的方式捕获有关辅助原子中答案的重量的信息,该方式被证明可以在无限的示例程序家族的分支机构优化期间产生指数改进。可以自由调整所使用的比较器网络,例如找到给定基准类的最佳尺寸。实验显示在几个基准问题上加速优化性能。

Answer set programming (ASP) is a paradigm for modeling knowledge intensive domains and solving challenging reasoning problems. In ASP solving, a typical strategy is to preprocess problem instances by rewriting complex rules into simpler ones. Normalization is a rewriting process that removes extended rule types altogether in favor of normal rules. Recently, such techniques led to optimization rewriting in ASP, where the goal is to boost answer set optimization by refactoring the optimization criteria of interest. In this paper, we present a novel, general, and effective technique for optimization rewriting based on comparator networks, which are specific kinds of circuits for reordering the elements of vectors. The idea is to connect an ASP encoding of a comparator network to the literals being optimized and to redistribute the weights of these literals over the structure of the network. The encoding captures information about the weight of an answer set in auxiliary atoms in a structured way that is proven to yield exponential improvements during branch-and-bound optimization on an infinite family of example programs. The used comparator network can be tuned freely, e.g., to find the best size for a given benchmark class. Experiments show accelerated optimization performance on several benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源