论文标题
计算强烈湍流泰勒的平均速度曲线 - couette流量和任意半径比率
Calculation of the mean velocity profile for strongly turbulent Taylor--Couette flow and arbitrary radius ratios
论文作者
论文摘要
Taylor--couette(TC)流是两个同轴独立旋转圆柱之间的剪切驱动的流动。近年来,高保真模拟和实验揭示了直至非常高的雷诺数的流向和角速度曲线的形状。然而,由于曲率效应,到目前为止,尚无理论能够正确描述给定半径比的湍流流速度曲线,因为在有限的空间区域中,在大多数拟合的平坦表面上,经典的prandtl-vonkármán对数定律。 在这里,我们通过将Monin-Obukhov曲率长度应用于湍流TC流量来解决这种缺陷。这个长度将流动动能的产生由纯剪切所控制的流动区域分开,其中它与流线的曲率结合起来。我们证明,对于所有雷诺数和半径比,平均流向和角速度曲线根据此分离塌陷。然后,我们得出速度曲线的功能形式。最后,我们将新衍生的角速度曲线与边界层高度处的恒定角动量曲线匹配,以获得扭矩对雷诺数的依赖性,或者换句话说,换句话说,是对广义的nusselt数(即,无量纲无角度速度传输)在泰勒号上。
Taylor--Couette (TC) flow is the shear-driven flow between two coaxial independently rotating cylinders. In recent years, high-fidelity simulations and experiments revealed the shape of the streamwise and angular velocity profiles up to very high Reynolds numbers. However, due to curvature effects, so far no theory has been able to correctly describe the turbulent streamwise velocity profile for given radius ratio, as the classical Prandtl--von Kármán logarithmic law for turbulent boundary layers over a flat surface at most fits in a limited spatial region. Here we address this deficiency by applying the idea of a Monin--Obukhov curvature length to turbulent TC flow. This length separates the flow regions where the production of turbulent kinetic energy is governed by pure shear from that where it acts in combination with the curvature of the streamlines. We demonstrate that for all Reynolds numbers and radius ratios, the mean streamwise and angular velocity profiles collapse according to this separation. We then derive the functional form of the velocity profile. Finally, we match the newly derived angular velocity profile with the constant angular momentum profile at the height of the boundary layer, to obtain the dependence of the torque on the Reynolds number, or, in other words, of the generalized Nusselt number (i.e., the dimensionless angular velocity transport) on the Taylor number.