论文标题

域的概率加权紧凑特征用于域自适应检索

Probability Weighted Compact Feature for Domain Adaptive Retrieval

论文作者

Huang, Fuxiang, Zhang, Lei, Yang, Yang, Zhou, Xichuan

论文摘要

域自适应图像检索包括单域检索和跨域检索。大多数现有图像检索方法仅集中在单域检索上,这假定检索数据库和查询的分布相似。但是,在实际应用中,通常在理想的照明/姿势/背景/摄像机条件和通常在不受控制的条件下获得的查询的检索数据库之间的差异非常大。在本文中,考虑到实际应用,我们专注于挑战跨域检索。为了解决该问题,我们提出了一种名为概率加权紧凑型特征学习(PWCF)的有效方法,该方法提供了域间相关指南,以促进跨域检索准确性,并学习一系列紧凑的二进制代码以提高检索速度。首先,我们通过最大a后验估计(MAP)来得出损失函数:贝叶斯透视图(BP)诱导的局灶性局灶性损失,BP诱导的量化损失和BP诱导的分类损失。其次,我们提出了域之间的共同歧管结构,以探索跨域之间的潜在相关性。考虑到原始特征表示由于域间差异而偏置,因此很难构造多种形式结构。因此,我们从样本统计的角度提出了一个名为邻居(HFON)的新功能。在各种基准数据库上进行的广泛实验验证了我们的方法优于域自适应图像检索的许多最新图像检索方法。源代码可从https://github.com/fuxianghuang1/pwcf获得

Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at https://github.com/fuxianghuang1/PWCF

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源