论文标题

具有类似人类顶端树突激活的非线性神经元

Non-linear Neurons with Human-like Apical Dendrite Activations

论文作者

Georgescu, Mariana-Iuliana, Ionescu, Radu Tudor, Ristea, Nicolae-Catalin, Sebe, Nicu

论文摘要

为了对线性不可分割的数据进行分类,通常将神经元组织成多层神经网络,这些神经网络至少配备了一个隐藏层。受神经科学中最近发现的启发,我们提出了一种新的人工神经元模型,并提出了一种新型的激活功能,从而实现了使用单个神经元的非线性决策边界学习。我们表明,标准神经元,然后是我们新颖的根尖树突激活(ADA)可以以100%精度学习XOR逻辑功能。 Furthermore, we conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing, i.e. MOROCO, UTKFace, CREMA-D, Fashion-MNIST, Tiny ImageNet and ImageNet, showing that the ADA and the leaky ADA functions provide superior results to Rectified Linear Units (ReLU), leaky ReLU, RBF and Swish, for various neural network architectures, e.g.一层或两层层的多层感知器(MLP)和卷积神经网络(CNN),例如LENET,VGG,RESNET和字符级别CNN。当我们使用顶端树突激活(Pynada)更改神经元的标准模型时,我们将获得进一步的性能改善。我们的代码可在以下网址提供:https://github.com/raduionescu/pynada。

In order to classify linearly non-separable data, neurons are typically organized into multi-layer neural networks that are equipped with at least one hidden layer. Inspired by some recent discoveries in neuroscience, we propose a new model of artificial neuron along with a novel activation function enabling the learning of nonlinear decision boundaries using a single neuron. We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy. Furthermore, we conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing, i.e. MOROCO, UTKFace, CREMA-D, Fashion-MNIST, Tiny ImageNet and ImageNet, showing that the ADA and the leaky ADA functions provide superior results to Rectified Linear Units (ReLU), leaky ReLU, RBF and Swish, for various neural network architectures, e.g. one-hidden-layer or two-hidden-layer multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs) such as LeNet, VGG, ResNet and Character-level CNN. We obtain further performance improvements when we change the standard model of the neuron with our pyramidal neuron with apical dendrite activations (PyNADA). Our code is available at: https://github.com/raduionescu/pynada.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源